RESULTS ON SUMS OF CONTINUED FRACTIONS

BY

JAMES L. HLAVKA

ABSTRACT. Let F(m) be the (Cantor) set of infinite continued fractions with partial quotients no greater than m and let $F(m) + F(n) = \{\alpha + \beta: \alpha \in F(m), \beta \in F(n)\}$. We show that F(3) + F(4) is an interval of length 1.14... so every real number is the sum of an integer, an element of F(3) and an element of F(4). Similar results are given for F(2) + F(7), F(2) + F(2) + F(4), F(2) + F(3) + F(3) and F(2) + F(2) + F(2) + F(2). The techniques used are applicable to any Cantor sets in R for which certain parameters can be evaluated.

Marshall Hall, Jr. [3] proved that $F(4) + F(4) \equiv \mathbb{R} \pmod{1}$ (all notation is defined in the next paragraph) and posed the question: is $F(3) + F(4) \equiv \mathbb{R} \pmod{1}$? In this paper we prove $F(3) + F(4) \equiv \mathbb{R} \pmod{1}$ and several other results, summarized in Table 1. Only two questions concerning when a sum of $F(m_i) \equiv \mathbb{R}$ remain open: $F(2) + F(5) \equiv \mathbb{R}$? and $F(2) + F(6) \equiv \mathbb{R}$? We conjecture that they are both false.

$$F(2) + F(4) \neq R F(3) + F(3) \neq R F(2) + F(2) + F(3) \neq R$$

$$F(2) + F(5) ? F(3) + F(4) \equiv R F(2) + F(2) + F(4) \equiv R$$

$$F(2) + F(6) ? F(2) + F(3) + F(3) \equiv R$$

$$F(2) + F(7) \equiv R F(2) + F(2) + F(2) + F(2) \equiv R$$

Table 1. All congruences are modulo 1

We let N be the natural numbers and R the real numbers. Lower case Roman letters except g and h will be elements of N; Greek letters elements of R. Let

$$\langle a_1, a_2, \ldots \rangle = \frac{1}{a_1} + \frac{1}{a_2} + \ldots,$$

Received by the editors June 25, 1974.

AMS (MOS) subject classifications (1970). Primary 10A30, 10F20; Secondary 10F40, 10J99.

Key words and phrases. Continued fractions, sums of Cantor sets, congruence modulo 1.

$$\langle a_1, \ldots, a_r, \overline{a_{r+1}, \ldots, a_s} \rangle$$

= $\langle a_1, \ldots, a_r, a_{r+1}, \ldots, a_s, a_{r+1}, \ldots, a_s, \ldots \rangle$,

and

$$F(m) = \{ \langle a_1, a_2, \ldots \rangle : 1 \le a_i \le m \text{ for all } i \in \mathbb{N} \}.$$

When working with continued fractions it is convenient to write intervals without ordering their endpoints, so we define

$$(\alpha, \beta) = \{ \xi \in \mathbb{R} : \min(\alpha, \beta) < \xi < \max(\alpha, \beta) \}$$

and

$$[\alpha, \beta] = \{ \xi \in \mathbb{R} : \min(\alpha, \beta) \le \xi \le \max(\alpha, \beta) \}.$$

If A and B are subsets of R, let \overline{A} = the span of $A = \sup(\alpha - \beta)$ over all $\alpha, \beta \in A$ and $A + B = \{\alpha + \beta : \alpha \in A, \beta \in B\}$. Write "A + B \equiv R (mod 1)" to mean " $\xi \in R$ implies $\xi \equiv \alpha + \beta$ (mod 1) for some $\alpha \in A, \beta \in B$." Let P(m) be the special closed interval $[(\overline{m, 1}), (\overline{1, m})]$.

Note that (m, 1) and (1, m) are the least and greatest elements of F(m), respectively, so $F(m) \subset P(m)$. Moreover $F(m) \subset F(m+1)$. The latter inclusion immediately shows that every question of the form $\sum_i F(m_i) \equiv R$? is covered in Table 1.

F(m) is a Cantor set so the natural approach to computing $\sum F(m_i)$ is by deleting intervals from the $P(m_i)$. Our objective is to devise an algorithm, called a construction of F(m), which controls the order of these deletions sufficiently to establish that $\sum F(m_i) = \sum P(m_i)$ whenever this is true. (This is the same approach Hall used to investigate F(4) + F(4).)

Lemma 1. $F(m) = P(m) \setminus O(m) = the set-theoretic difference of <math>P(m)$ and O(m), where O(m) is defined by

$$O(m) = \bigcup \{ (\langle a_1, \ldots, a_s, \overline{1, m} \rangle, \langle a_1, \ldots, a_s + 1, \overline{m, 1} \rangle) : s \in \mathbb{N},$$

$$1 \le a_i \le m \text{ for } i \le s \text{ and } a_s \ne m \}.$$

Proof. We show that O(m) is composed of precisely those intervals which are deleted from P(m) to form F(m).

First assume $\alpha \in P(m) \setminus F(m)$. Then α has a first partial quotient a_{r+1} which is greater than m, with r > 0 and $a_r \ne 1$ when r = 1. Now if $a_r = 1$ then

$$\alpha = \langle a_1, \ldots, a_{r-1}, a_r, \ldots \rangle$$

$$\in (\langle a_1, \ldots, a_{r-1} + 1, \overline{m, 1} \rangle, \langle a_1, \ldots, a_{r-1}, \overline{1, m} \rangle)$$

and if $a_r > 1$ then

$$\alpha \in (\langle a_1, \ldots, a_r - 1, \overline{1, m} \rangle, \langle a_1, \ldots, a_r, \overline{m, 1} \rangle),$$

so $\alpha \in O(m)$. Conversely if $\alpha \in (\langle a_1, \ldots, a_s, \overline{1, m} \rangle, \langle a_1, \ldots, a_s + 1, \overline{m, 1} \rangle) \subset O(m)$, then

(2)
$$\alpha \in (\langle a_1, \ldots, a_s, \overline{1, m} \rangle, \langle a_1, \ldots, a_s + 1 \rangle),$$

(3)
$$\alpha = \langle a_1, \ldots, a_s + 1 \rangle$$
, or

(4)
$$\alpha \in (\langle a_1, \ldots, a_s + 1 \rangle, \langle a_1, \ldots, a_s + 1, \overline{m, 1} \rangle).$$

If (2) then $\alpha = \langle a_1, \ldots, a_s, \alpha' \rangle$ where $\langle \overline{1, m} \rangle < \alpha' < 1$ so $\alpha' \notin F(m)$. Hence $\alpha \notin F(m)$. If (4) then $\alpha = \langle a_1, \ldots, a_{s+1}, \alpha' \rangle$ where $\alpha' < \langle \overline{m, 1} \rangle$ and again $\alpha \notin F(m)$. Lastly, (3) implies $\alpha \notin F(m)$ since F(m) contains only infinite continued fractions. \square

We now define a construction of F(m) as follows. Let $I_m^2 = P(m)$. Choose an interval O_m^2 of O(m) and delete it from I_m^2 , leaving two new intervals I_m^3 and I_m^4 . From each delete an interval of O(m), say O_m^3 and O_m^4 respectively. I_m^3 will be split into two intervals I_m^5 and I_m^6 ; I_m^4 will be split into I_m^7 and I_m^8 . From each of I_m^5, \ldots, I_m^8 delete the interval O_m^5, \ldots, O_m^8 respectively. Continue in this way. This procedure is demonstrated in Figures 1a and 1b. If $O(m) = \bigcup_{i=2}^{\infty} O_m^i$ we call this procedure a construction C of F(m). We call $F_m^k = \bigcup_{j=2}^{2^k} k-1 \prod_{j=1}^{j} f$ the kth step in the construction of F(m).

Figure la

Step
$$k$$

$$\frac{I_m^{2^{k-1}+1}}{I_m^{2^{k+1}} \cdot \dots \cdot I_m^{2^{k}} \cdot \dots \cdot I_m^{2^{k}}} \cdots \underbrace{I_m^{2^{k}} \cdot \dots \cdot I_m^{2^{k}}}_{m} \cdot \dots \cdot \underbrace{I_m^{2^{k+1}-1} \cdot \dots \cdot I_m^{2^{k+1}-1}}_{m} \cdot \dots \cdot \underbrace{I_m^{2^{k+1}-1} \cdot \dots \cdot I_m^{2^{k}}}_{m} \cdot \dots \cdot \underbrace{I_m^{2^{k}-1} \cdot \dots \cdot I_m^{2^{k}-1}}_{m} \cdot \dots \cdot \underbrace{I_m^{2^{k}-1} \cdot \dots \cdot$$

Figure 1b

Lemma 2. If C is any construction of F(m), m > 1, and F_m^k is the kth step in this construction, then $F(m) = \bigcap_{k=1}^{\infty} F_m^k$.

Proof. Obvious from Figure 1b. \square

Definition. If C is a construction of F(m), then

$$g_m = g_m(C) = \sup_i (\overline{O_m^i}/\overline{I_m^i}),$$

$$b_m = b_m(C) = \inf\left(\inf_i(\overline{I_m^{2i-1}}/\overline{I_m^i}), \inf_i(\overline{I_m^{2i}}/\overline{I_m^i})\right),$$

and

$$h'_m = h'_m(C) = \sup_i \left(\sup_i (\overline{I_m^{2i-1}}/\overline{I_m^i}), \sup_i (\overline{I_m^{2i}}/\overline{I_m^i}) \right).$$

Theorem 3. If there exist constructions C and C' of F(m) and F(n)respectively such that

(5)
$$g_m(C) \cdot g_n(C') \le h_m(C) \cdot h_n(C')$$
 and

(6)
$$g_m(C) \cdot \overline{P(m)} \leq \overline{P(n)}$$
 and $g_n(C') \cdot \overline{P(n)} \leq \overline{P(m)}$
then $F(m) + F(n) = P(m) + P(n)$.

Proof. Let $\{l_m^i\}_{i=2}^{\infty}$ and $\{l_n^j\}_{i=2}^{\infty}$ be the intervals appearing in the constructions C and C'respectively. Call the intervals l_m^i and l_n^j compatible (with respect to C and C'), written $I_m^i \sim I_n^j$, iff

(7)
$$g_m \cdot \overline{I_m^i} \leq \overline{I_n^j}$$
 and $g_n \cdot \overline{I_n^j} \leq \overline{I_m^i}$.

(9.3)

Call the intervals l_m^i and l_n^j M-dividable, written $l_m^i \stackrel{M}{\approx} l_n^j$, iff (8) or (9) is true, where (8) and (9) are the following (symmetric) conditions.

(8.1)
$$I_{m}^{2i-1} \sim I_{n}^{j}$$
 and $I_{m}^{2i} \sim I_{n}^{j}$,
(8.2) $(I_{m}^{2i-1} + I_{n}^{j}) \cup (I_{m}^{2i} + I_{n}^{j}) = I_{m}^{i} + I_{n}^{j}$, and
(8.3) $M \cdot \overline{I_{m}^{i}} \geq \overline{I_{n}^{j}}$,
(9.1) $I_{m}^{i} \sim I_{n}^{2j-1}$ and $I_{m}^{i} \sim I_{n}^{2j}$,
(9) $(9.2) \quad (I_{m}^{i} + I_{n}^{2j-1}) \cup (I_{m}^{i} + I_{n}^{2j}) = I_{m}^{i} + I_{n}^{j}$, and
(9.3) $M \cdot \overline{I_{n}^{j}} > \overline{I_{n}^{i}}$.

The four pairs of intervals appearing in (8.1) and (9.1) are said to be derived from the pair (l_m^i, l_n^j) .

It suffices to show that for some $M \in \mathbb{R}^+$, $I_m^i \sim I_n^j$ implies $I_m^i \approx I_n^j$ for all $i, j \geq 2$. To prove this, set $S_0 = \{(I_m^2, I_n^2)\}$ and

 $S_{r+1} = \{(I, J): I \sim J \text{ and } (I, J) \text{ is derived from a pair } (I_0, J_0) \in S_r\}.$ Clearly

$$\bigcup \{I+J: (I, J) \in S_{r+1}\} = \bigcup \{I+J: (I, J) \in S_r\} = \cdots = I_m^2 + I_n^2 = P(m) + P(n).$$

If $(I, J) \in S_r$ then $\overline{I} \cdot \overline{J} \leq \lambda^r \cdot \overline{I_m^2} \cdot \overline{I_n^2} \to 0$ as $r \to \infty$, where $\lambda = \max(1 - h_m, 1 - h_n) < 1$ (if h_m or $h_n = 0$ then g_m or $g_n = 0$ by (5) so F(m) or F(n) is not a Cantor set—contradiction). Since $I \sim J$, the ratio $\overline{I}/\overline{J}$ is bounded so $\overline{I} \to 0$ and $\overline{J} \to 0$. Therefore for each i there is an r_0 such that O_m^i has been deleted from every I appearing in a pair $(I, J) \in S_r$, $r > r_0$. Since $O(m) = \bigcup_{i=2}^{\infty} O_m^i$,

(10)
$$O(m) \cap \left(\bigcap_{r=0}^{\infty} \left(\bigcup \{I: (I, J) \in S_r\}\right)\right) = \emptyset.$$

But for all r, $F(m) \subset \bigcup \{l: (l, j) \in S_r\} \subset P(m)$ so (10) and Lemma 1 yield

$$F(m) = \bigcap_{r=0}^{\infty} \left(\bigcup \{I: (I, J) \in S_r \} \right).$$

Similarly for F(n). Since the sequence $\{\bigcup\{I: (I, J) \in S_r\}\}_{r=0}^{\infty}$ is a nested sequence of compact sets, we obtain directly the result

$$F(m) + F(n) = \bigcap_{r=0}^{\infty} \left(\bigcup \{ I + J : (I, J) \in S_r \} \right) = \bigcap_{r=0}^{\infty} (P(m) + P(n)) = P(m) + P(n).$$

Now fix $M \ge \max(h_m/g_n, h_n/g_m)$ and assume $l_m^i \sim l_n^j$. Since $g_m g_n \le h_m h_n$, we must have

$$(11) \qquad \qquad \overline{l_n^i} / \overline{l_n^i} \ge g_n / h_m$$

or

(12)
$$\overline{l_m^i}/\overline{l_n^j} \le h_n/g_m.$$

Assuming (11) we will verify (8). Similarly (9) will follow from (12), so this will show $l_m^{i} \stackrel{M}{\sim} l_n^{j}$. So assume (11) and set k = 2i - 1 or 2i. Then recalling the definition of h_m ,

$$\overline{I_{m}^{k}} \ge h_{m} \cdot \overline{I_{m}^{i}} \ge g_{n} \cdot \overline{I_{n}^{i}}$$
 and $\overline{I_{n}^{i}} \ge g_{m} \cdot \overline{I_{m}^{i}} \ge g_{m} \cdot \overline{I_{m}^{k}}$,

so $I_m^k \sim I_n^j$. To check (8.2), let $I_m^{2i-1} = [\alpha, \beta]$, $I_m^{2i} = [\gamma, \delta]$ and $I_n^j = [\alpha_0, \delta_0]$, with $\alpha < \beta < \gamma < \delta$ and $\alpha_0 < \delta_0$. Since

(13)
$$\overline{l_n^i} \geq g_m \cdot \overline{l_m^i} \geq \overline{O_m^i}, \qquad \bullet$$

we have $\delta_0 - \alpha_0 \ge \gamma - \beta$ or $\beta + \delta_0 \ge \gamma + \alpha_0$. Then

$$(I_{m}^{2i-1} + I_{n}^{j}) \cup (I_{m}^{2i} + I_{n}^{j}) = [\alpha + \alpha_{0}, \beta + \delta_{0}] \cup [\gamma + \alpha_{0}, \delta + \delta_{0}]$$
$$= [\alpha + \alpha_{0}, \delta + \delta_{0}] = I_{m}^{i} + I_{n}^{j}.$$

Lastly, (8.3) is satisfied by our choice of M. \square

Lemma 4. If
$$\alpha = \langle a_1, \dots, a_s, \alpha' \rangle$$
, $\beta = \langle a_1, \dots, a_s, \beta' \rangle$, $\alpha' > 0$, $\beta' > 0$, $\langle a_1, \dots, a_s \rangle = p_s/q_s$, $\langle a_1, \dots, a_{s-1} \rangle = p_{s-1}/q_{s-1}$ and $Q = q_{s-1}/q_s$, then
$$(\alpha' - \beta')/(\alpha - \beta) = (Q + \alpha')(Q + \beta')(-1)^{s+1}q^2.$$

Proof. We have

$$\alpha - \beta = \frac{p_{s}\alpha' + p_{s-1}}{q_{s}\alpha' + q_{s-1}} - \frac{p_{s}\beta' + p_{s-1}}{q_{s}\beta' + q_{s-1}}$$

$$= \frac{p_{s}}{q_{s}} \left\{ \frac{\alpha' + Q + p_{s-1}/p_{s} - Q}{\alpha' + q_{s-1}/q_{s}} - \frac{\beta' + Q + p_{s-1}/p_{s} - Q}{\beta' + q_{s-1}/q_{s}} \right\}$$

$$= \frac{p_{s}}{q_{s}} \left(\frac{p_{s-1}}{p_{s}} - Q \right) \left\{ \frac{1}{\alpha' + Q} - \frac{1}{\beta' + Q} \right\}$$

$$= \frac{(-1)^{s+1}(\alpha' - \beta')}{q^{2}(\alpha' + Q)(\beta' + Q)},$$

since $p_{s-1}q_s - p_sq_{s-1} = (-1)^s$. The result follows immediately. \square

Lemma 5. If $\gamma = \langle a_1, \ldots, a_s, \gamma' \rangle$, $\delta = \langle a_1, \ldots, a_s, \delta' \rangle$, $\gamma' > 0$, $\delta' > 0$, and $\alpha, \beta, \alpha', \beta', Q$ are as in Lemma 4, then

(14)
$$\frac{\alpha-\beta}{\gamma-\delta} = \frac{\alpha'-\beta'}{\gamma'-\delta'} \cdot \frac{(Q+\gamma')(Q+\delta')}{(Q+\alpha')(Q+\beta')}$$

and $Q \in [1/(a_s + 1), 1]$.

Proof. Statement (14) is an immediate corollary of Lemma 4. The restriction on Q follows from the well-known result that $Q = \langle a_s, \ldots, a_1 \rangle$. \square

Theorem 6. F(3) + F(4) = P(3) + P(4) = [(3, 1) + (4, 1), (1, 3) + (1, 4)] = [.4709..., 1.6197...].

Proof. We produce constructions of F(3) and F(4) satisfying the hypotheses of Theorem 3. Let us begin by defining a canonical construction, C_m , of F(m) for any m, as follows. I_m^2 must be $[\overline{m,1},\overline{1,m}]$. If

$$I_{m}^{i} = [\langle a_{1}, \ldots, a_{s}, j, \overline{m, 1} \rangle, \langle a_{1}, \ldots, a_{s}, m, \overline{1, m} \rangle]$$

with $s \ge 0$ and $j \ne m$ then

$$O_m^i = (\langle a_1, \ldots, a_s, j, \overline{1, m} \rangle, \langle a_1, \ldots, a_s, j+1, \overline{m, 1} \rangle)$$

so that

$$I_m^{2i-1} = [\langle a_1, \ldots, a_s, j, \overline{m, 1} \rangle, \langle a_1, \ldots, a_s, j, \overline{1, m} \rangle]$$

and

$$l_m^{2i} = [\langle a_1, \ldots, a_s, j+1, \overline{m, 1} \rangle, \langle a_1, \ldots, a_s, m, \overline{1, m} \rangle].$$

It is relatively easy to show that $\bigcup_{i=2}^{\infty} O_m^i = O(m)$ so this does define a construction of F(m). The value of the constructions C_m is that we can readily calculate $g_m(C_m)$ and $h_m(C_m)$ (and $h_m'(C_m)$, which will be needed later). We have

$$g_{m}(C_{m}) = \max_{i \geq 2} (\overline{O_{m}^{i}} / \overline{I_{m}^{i}})$$

$$= \max \frac{\langle a_{1}, \dots, a_{s}, j, \overline{1, m} \rangle - \langle a_{1}, \dots, a_{s}, j + 1, \overline{m, 1} \rangle}{\langle a_{1}, \dots, a_{s}, j, \overline{m, 1} \rangle - \langle a_{1}, \dots, a_{s}, m, \overline{1, m} \rangle}$$

over $1 \le j \le m$, $s \ge 0$ and $1 \le a_i \le m$ for $i \le s$. Using Lemma 5, we obtain

$$g_{m}(C_{m}) \leq \max \left\{ \frac{\langle j, \overline{1, m} \rangle - \langle j+1, \overline{m, 1} \rangle}{\langle j, \overline{m, 1} \rangle - \langle m, \overline{1, m} \rangle} \cdot \frac{(Q+\langle j, \overline{m, 1} \rangle)(Q+\langle m, \overline{1, m} \rangle)}{(Q+\langle j, \overline{1, m} \rangle)(Q+\langle j+1, \overline{m, 1} \rangle)} \right\}$$

over $1 \le j \le m$ and $Q \in [1/(m+1), 1]$. For each allowable value of j this expression is a rational function in Q whose maximum on the interval [1/(m+1), 1] can be readily calculated. A Univac 1108 was used to perform these calculations and then maximize over j (and for similar calculations arising later). We thus obtain the bounds

$$g_3(C_3) \le .2992...$$
 and $g_4(C_4) \le .2278...$

Similarly

$$\begin{split} h_m(C_m) &= \min_{i \geq 2} \left(\min \left(\overline{I_m^{2i-1}} / \overline{I_m^i}, \, \overline{I_m^{2i}} / \overline{I_m^i} \right) \right) \\ &= \min_{j, a_i} \left(\min \left(\frac{\langle a_1, \ldots, a_s, j, \overline{1, m} \rangle - \langle a_1, \ldots, a_s, j, \overline{m, 1} \rangle}{\langle a_1, \ldots, a_s, m, \overline{1, m} \rangle - \langle a_1, \ldots, a_s, j, \overline{m, 1} \rangle} \right) \\ &\qquad \qquad \frac{\langle a_1, \ldots, a_s, m, \overline{1, m} \rangle - \langle a_1, \ldots, a_s, j, \overline{m, 1} \rangle}{\langle a_1, \ldots, a_s, m, \overline{1, m} \rangle - \langle a_1, \ldots, a_s, j, \overline{m, 1} \rangle} \right) \\ &\geq \min_{j, Q} \left(\min \left(\frac{\langle j, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle}{\langle m, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle} \cdot \frac{\langle Q + \langle m, \overline{1, m} \rangle}{\langle Q + \langle j, \overline{1, m} \rangle}, \right) \right) \\ &\qquad \qquad \frac{\langle m, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle}{\langle m, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle} \cdot \frac{\langle Q + \langle j, \overline{m, 1} \rangle}{\langle Q + \langle j, \overline{m, 1} \rangle} \right) \\ &\qquad \qquad \frac{\langle m, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle}{\langle m, \overline{1, m} \rangle - \langle j, \overline{m, 1} \rangle} \cdot \frac{\langle Q + \langle j, \overline{m, 1} \rangle}{\langle Q + \langle j, \overline{m, 1} \rangle} \right) \\ \end{pmatrix}, \end{split}$$

from which we obtain

$$h_3(C_3) \ge .2471...$$
 and $h_4(C_4) \ge .2963...$

A simple multiplication shows that

$$g_3(C_3) \cdot g_4(C_4) \le .0667 < .0731 \le h_3(C_3) \cdot h_4(C_4)$$

Also

$$g_3 \cdot \overline{P(3)} \le .2992 \times .5276 < P(4) = .6212 \dots < \frac{.5276}{.2278} \le \frac{\overline{P(3)}}{g_4}$$

so by Theorem 3 we have the result F(3) + F(4) = P(3) + P(4). \square

Corollary 7.
$$F(3) + F(4) \equiv R \pmod{1}$$
.

Proof. This is obvious since F(3) + F(4) contains an interval of length greater than one. \Box

The values of g_3 , g_4 , h_3 and h_4 are in fact equal to the bounds given because these bounds arise from Q = 1/(m+1) or Q = 1, which are possible values of Q. For g_2 and h_2 , below, this does not happen.

Applying Theorem 3 to the canonical constructions of F(2) and F(12) as above we can establish F(2) + F(12) = P(2) + P(12), but now we find that the canonical construction of F(12) is not an optimal construction in terms of minimizing the ratio g_{12}/h_{12} . This is because the maximal value of O_m^i/I_m^i always occurs at j=m-1 but the minimal value of $\min(\overline{I_m^{2i-1}}, \overline{I_m^{2i}})/\overline{I_m^i}$

only occurs at j = m - 1 if $m \le 4$. A noncanonical construction can allow us to lower the number 12, but the best result is obtained by extending Theorem 3.

Theorem 8. If there exist constructions C and C' of F(m) and F(n) respectively, such that

$$(15) \quad \overline{O_m^i} \cdot \overline{O_n^j} \leq \min(\overline{I_m^{2i-1}}, \overline{I_m^{2i}}) \cdot \min(\overline{I_n^{2j-1}}, \overline{I_n^{2j}}) \quad \text{for all } i, j \geq 2,$$

(16)
$$g_m \cdot \overline{P(m)} \leq \overline{P(n)} \text{ and } g_n \cdot \overline{P(n)} \leq \overline{P(m)},$$

and

(17)
$$\max(h'_{m}, h'_{n}) \cdot g_{m}g_{n} \leq h_{m}h_{n},$$
then $F(m) + F(n) = P(m) + P(n)$.

Proof. Call the intervals l_m^i and l_n^j M-dividable iff (8), (9) or

$$(I_m^{2i-1} + I_n^{2j-1}) \cup (I_m^{2i-1} + I_n^{2j}) \cup (I_m^{2i} + I_n^{2j-1})$$

$$(18.1) \qquad \qquad \cup (I_m^{2i} + I_n^{2j}) = I_m^i + I_n^j \text{ and}$$

(18)

(18.2)
$$I_m^{2i-1} \sim I_n^{2j-1}$$
, $I_m^{2i-1} \sim I_n^{2j}$, $I_m^{2i} \sim I_n^{2j-1}$, and $I_m^{2i} \sim I_n^{2j}$

holds. The proof now parallels the proof of Theorem 3; the only significant difference being to show that a compatible pair is M-dividable* when neither (11) nor (12) holds. So assume

$$(19) h_n/g_m \le \frac{\overline{l^i}}{m}/\overline{l^j} \le g_n/h_m.$$

Let $I_m^{2i-1} = [\alpha, \beta]$, $I_m^{2i} = [\gamma, \delta]$, $I_n^{2j-1} = [\alpha_0, \beta_0]$, and $I_n^{2j} = [\gamma_0, \delta_0]$. From (15) we obtain

$$\overline{O_m^i} \le \min(\overline{I_n^{2j-1}}, \overline{I_n^{2j}}) \quad \text{or} \quad \overline{O_n^j} \le \min(\overline{I_m^{2i-1}}, \overline{I_m^{2i}});$$

assume for simplicity the latter. Then $\gamma_0 - \beta_0 \le \min(\beta - \alpha, \delta - \gamma)$ so $\alpha + \gamma_0 \le \beta + \beta_0$ and $\gamma + \gamma_0 \le \delta + \beta_0$. Then the LHS of (18.1) is

$$\begin{split} &[\alpha+\alpha_0,\ \beta+\beta_0]\cup[\alpha+\gamma_0,\ \beta+\delta_0]\cup[\gamma+\alpha_0,\ \delta+\beta_0]\cup[\gamma+\gamma_0,\ \delta+\delta_0]\\ &=[\alpha+\alpha_0,\ \beta+\delta_0]\cup[\gamma+\alpha_0,\ \delta+\delta_0]=[\alpha+\alpha_0,\ \delta+\delta_0]=I_m^i+I_m^i. \end{split}$$

For k = 2i - 1 or 2i, l = 2j - 1 or 2j, we have

$$\overline{I_{m}^{k}} \geq h_{m} \cdot \overline{I_{m}^{i}} \geq \frac{h_{m}h_{n}}{g_{m}} \cdot \overline{I_{n}^{i}} \geq \frac{h_{m}h_{n}}{g_{m}h_{m}^{i}} \cdot \overline{I_{n}^{l}} \geq g_{n} \cdot \overline{I_{n}^{l}}$$

and similarly $\overline{I_n^l} \ge g_m \cdot \overline{I_m^k}$ so $\overline{I_m^k} \sim \overline{I_n^l}$. \square

Theorem 9. $F(2) + F(7) = P(2) + P(7) = [.4928..., 1.6195...] \equiv \mathbb{R}$ (mod 1).

Proof. The canonical constructions can be used. We again apply Lemma 5 to obtain the bounds

$$g_2 \le .4456..., h_2 \ge .1686..., h'_2 \le .4589..., g_7 \le .1343...,$$

$$h_7 \ge .2906..., h'_7 \le .6359..., \text{ and } \frac{\overline{O_7^i}}{\min(\overline{I_7^{2j-1}}, \overline{I_7^{2j}})} \le .3594....$$

Since $\min(\overline{I_2^{2i-1}}, \overline{I_2^{2i}})/\overline{O_2^i} \ge h_2/g_2$, it is now easy to verify the hypotheses of Theorem 8. \square

For any constructions of F(2) and F(6), equation (15) fails whenever an interval of the type $(\langle a_1, \ldots, a_s, 5, \overline{1,6} \rangle, \langle a_1, \ldots, a_s, 6, \overline{6,1} \rangle)$ is deleted from F(6). Thus, as (15) is intuitively a "best possible" condition in the sense that no weakening approximations were made, it is probable that $F(2) + F(6) \neq P(2) + P(6)$. Moreover, since (15) fails infinitely often, F(2) + F(6) may possibly be a Cantor set.

The negative results $F(3) + F(3) \not\equiv R \pmod{1}$ and $F(2) + F(4) \not\equiv R \pmod{1}$ can be verified directly. P(2) + P(4) has length less than one and $F(3) \subset [\overline{(3,1)}, \overline{(3,3,1)}] \cup [\overline{(2,1,3)}, \overline{(1,3)}]$ yields

$$F(3) + F(3) \subset [.5274..., .62178...] \cup [.62200..., 1.5826...]$$

We now look at sums of $F(m_1) + ... + F(m_s)$ with s > 2.

Theorem 10. Let C_1, \ldots, C_s be constructions of $F(m_1), \ldots, F(m_s)$ respectively (not necessarily canonical constructions). If

(20)
$$b_m \leq \overline{I_m^2}/\overline{I_n^2}$$
 for $m, n \in \{m_1, \dots, m_s\}$, and

(21)
$$g_m + h_m \le \sum_{i=1}^s h_{m_i}$$
 for $m \in \{m_1, \dots, m_s\}$
then $F(m_1) + \dots + F(m_s) = P(m_1) + \dots + P(m_s)$.

Proof. Again we mimic the proof of Theorem 3. Let $(l_{m_1}^{j_1}, \ldots, l_{m_s}^{j_s})$ be compatible iff

(22)
$$b_{m_i} \cdot \overline{l_{m_k}^{j_k}} \leq \overline{l_{m_i}^{j_i}} \quad \text{for } 1 \leq i, \ k \leq s.$$

Call
$$(I_{m_1}^{j_1}, \dots, I_{m_s}^{j_s})$$
 dividable iff
$$(I_n^{2j-1} + (I_{m_1}^{j_1} + \dots + \widehat{I_n^{j_s}} + \dots + I_{m_s}^{j_s})) \cup (I_n^{2j} + (I_{m_1}^{j_1} + \dots + \widehat{I_n^{j_s}} + \dots + I_{m_s}^{j_s}))$$

$$= I_{m_1}^{j_1} + \dots + I_{m_s}^{j_s},$$
(23)

and $(l_{m_1}^{j_1}, \ldots, l_n^{2j-1}, \ldots, l_{m_s}^{j_s})$ and $(l_{m_1}^{j_1}, \ldots, l_n^{2j}, \ldots, l_{m_s}^{j_s})$ are compatible, where $\widehat{}$ means omission and n is such that

(24)
$$\overline{l_n^i} \ge \overline{l_{m_i}^{i_i}} \quad \text{for } 1 \le i \le s.$$

Hypothesis (20) says the beginning s-tuple $(I_{m_1}^2, \ldots, I_{m_s}^2)$ is compatible, so the proof reduces to showing that every compatible s-tuple is dividable. Let k=2j-1 or 2j. Then $\overline{I_n^k} \geq h_n \cdot \overline{I_n^j} \geq h_n \cdot \overline{I_{m_i}^j}$ for $1 \leq i \leq s$, and the other combinations of subscripts occurring in (22) trivially produce correct inequalities, so $(I_{m_1}^j, \ldots, I_{m_s}^k, \ldots, I_{m_s}^j)$ is compatible. From (21), we have

$$g_n \leq h_{m_1} + \cdots + \widehat{h_n} + \cdots + h_{m_s}$$

so that

$$\overline{l_{m_1}^{j_1}} + \dots + \overline{l_n^{j_s}} + \dots + \overline{l_{m_s}^{j_s}} \ge h_{m_1} \cdot \overline{l_n^{j}} + \dots + h_n \cdot \overline{l_n^{j}} + \dots + h_{m_s} \cdot \overline{l_n^{j}}$$

$$= (h_{m_1} + \dots + \widehat{h_n} + \dots + h_{m_s}) \cdot l_n^{j} \ge g_n \cdot \overline{l_n^{j}} \ge \overline{O_n^{j}}.$$

This is the analog of equation (13) and is precisely the inequality needed to establish (23).

Theorem 11. The following are all true.

$$F(2) + F(2) + F(4) = P(2) + P(2) + P(4) \equiv R \pmod{1},$$

 $F(2) + F(3) + F(3) = P(2) + P(3) + P(3) \equiv R \pmod{1},$

and

$$F(2) + F(2) + F(2) + F(2) = P(2) + P(2) + P(2) + P(2) \equiv \mathbb{R} \pmod{1}$$

Proof. Apply Theorem 10 to the canonical constructions of F(2), F(3) and F(4). \square

The final result listed in Table 1, $F(2) + F(2) + F(3) \not\equiv \mathbb{R}$, results from inspecting the first few subdivisions of F(2) and F(3).

T. W. Cusick and R. A. Lee [1], [2] have investigated $\Sigma_i S(m_i)$, where

$$S(m) = \{ (a_1, a_2, \ldots) : a_i \ge m \text{ for all } i \}$$

$$\cup \{ (a_1, \ldots, a_s) : a_i \ge m \text{ for } 1 \le i \le s, s \ge 1 \} \cup \{0\}.$$

They have shown [2] that

(25)
$$\sum_{i=1}^{m} S(m) = [0, 1].$$

Our Theorem 10 can be applied to $\Sigma_i S(m_i)$ in place of $\Sigma_i F(m_i)$, whereupon (25) follows as a relatively easy special case.

More generally, Theorems 3, 8 and 10 are applicable to any Cantor sets for which g_m , h_m and h_m' can be evaluated.

BIBLIOGRAPHY

- 1. T. W. Cusick, Sums and products of continued fractions, Proc. Amer. Math. Soc. 27 (1971), 35-38. MR 42 #4498.
- 2. T. W. Cusick and R. A. Lee, Sums of sets of continued fractions, Proc. Amer. Math. Soc. 30 (1971), 241-246. MR 44 #158.
- 3. Marshall Hall, Jr., On the sum and product of continued fractions, Ann. of Math. (2) 48 (1947), 966-993. MR 9, 226.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53705